USAF/WL ROBUST 300 °C WIRE INSULATION SYSTEM PROGRAM STATUS

Wing Wong
TRW Space and Electronics
Redondo Beach, California

5/7-33 6338. P. 10

ROBUST 300'C WIRE INSULATION SYSTEM

PROGRAMMATICAL INFORMATION

Carried and the companies of the compani

- WRIGHT LABORATORY PROGRAM MANAGER: JOHN NAIRUS (WL/POOC-1)
- TRW PROGRAM MANAGER: WING WONG* (SPACE & ELECTRONICS GROUP)
- KEY NON-TRW PROGRAM PARTICIPANTS

COMPANY	ROLE
LAWRENCE TECHNOLOGY AND TELEDYNE THERMATICS	FILM ELECTRICAL PROPERTY TESTING WIRE TESTING WIRE QUALITY TESTING
MCDONNELL AEROSPACE - ST. LOUIS	DETAILED WIRE TESTING
POLY-MATERIALS	POLYIMIDE POLYMER PREPARATION
REXHAM	CONTINUOUS FILM PREPARATION
*PREVIOUSLY MANAGED BY ROBERT J. JONES	

OBJECTIVE

THE OBJECTIVE OF THIS PROGRAM IS TO IDENTIFY, DEVELOP, AND DEMONSTRATE AN OPTIMUM WIRE INSULATION SYSTEM CAPABLE OF CONTINUOUS OPERATION AT 300°C WHICH POSSESSES A COMBINATION OF SUPERIOR ELECTRICAL (AC OR DC), MECHANICAL, AND PHYSICAL PROPERTIES OVER KAPTON® DERIVED INSULATIONS DESCRIBED IN MIL-W-81381 AND THOSE HYBRID MATERIALS COMMONLY KNOWN AS TKT CONSTRUCTIONS.

ROBUST 300°C WIRE INSULATION SYSTEM

TASK 1 - FILM/ADHESIVE CANDIDATE SCREENING

- SHALL BALANCE VARYING AMOUNTS OF FLUORINE CHARACTER FOR CANDIDATE POLYMERS
 AGAINST EXPECTED (OR KNOWN) EFFECTS OF THERMAL-MECHANICAL AND ELECTRICAL
 PROPERTIES.
- SHALL MAKE AND TEST A MINIMUM OF SIX FILM AND ADHESIVE CANDIDATES TAILORED TO CONTRIBUTE THEIR BEST PROPERTIES TO A SUPERIOR 300°C WIRE INSULATION SYSTEM.

SUBTASKS

- FILM/ADHESIVE SAMPLE PROCUREMENT/PREPARATION
 - PFPI (4-BDAF/PMDA FORMULATION)
 - FPE 265
 - AFR700B
 - FM680-1
 - MODIFIED AFR700
- DATABASE PROPERTY DETERMINATION
 - DYNAMIC MECHANICAL ANALYSIS FOR GLASS TRANSITION TEMPERATURE
 - TENSILE STRENGTH
 - TENSILE LAP SHEAR STRENGTH FOR FILM/ADHESIVE SYSTEM
 - ELECTRICAL PROPERTIES (DIELECTRIC PROPERTIES, BREAKDOWN VOLTAGE AND DRY ARC TRACK

PROGRAM LOGIC DIAGRAM

TASK 1 - Results

Material		Kapton	FPE-265	PFPI	AFR700B	FM680-1	Mod. AFR
Tg (G' Kn	ee)	340 C	333 C	350 C	375 C	368 C	265 C
Tensile St	rength (ksi)						
	RT	28.6	11.5	11.5			
	250C	17.3(60%)	4.2 (37%)	7.0 (61%)			
	300C	11.6(41%)	2.8 (24%)	2.9 (25%)			
Dielectric	Constant						
RT	.4KHz	3.46	3.07	2.08			
	1KHZ	2.45	3.1	2.08			
300C	.4KHz	2.89	2.82	1.91			
	1KHz	2.88	2.82	1.91			
Dissipatio	n Factor						
RT	.4KHz	0.0045	0.0057	0.0028			
	1KHZ	0.0051	0.0115	0.0011			
300C	.4KHz	0.0051	0.0017	0.001			
	1KHz	0.0044	0.0017	0.0008			
Breakdow	n (kV/mil)						
RT	AC	7.3	6.3	6.3			
RT	DC	9.9	11.4	10.4			

System	PFPI/AFR	PFPI/Cytec 68	0 FPE/AFR	FPE/Cytec	
Lap Shear (ksi)					
RT	1.55	1.52	0.92	1.78	
300 C	1.00(65%)	.58 (38%)	.20 (22%)	.33 (19%)	

^() Percentage of Strength Retention Compared to RT

Approved Task 2 Film/Adhesive System Candidates Contract F33615-93-C-2367, Robust 300°C Wire Insulation System

Polymer/Adhesive System Candidate	Selection Rationale
PFPI ⁽¹⁾ /AF-R-700B	 Demonstrated excellent potential for service at 300°C with glass transition temperature (by DMA, G' Knee) in excess of 320°C
FPE 265/AF-R-700B	 Demonstrated acceptable bonding capability with tensile lap shear testing at RT and 300°C
PFPI/Cytec 680-1 ⁽²⁾	Eliminate modified AF-R-700 as adhesive due to low glass
FPE 265/Cytec 680-1	transition temperature (260°C), lack of lap shear strength at 300°C and marginal processability

^{(1) 4} BDAF/PMDA formulation

⁽²⁾ Extracted resin from Cytec 680-1 film adhesive

TASK 2 - DETAILED FILM/ADHESIVE SYSTEM TESTING

- EMPLOY THE FOUR PROMISING POLYMERIC FILM AND ADHESIVE CANDIDATES RECOMMENDED AT THE CONCLUSION OF TASK 1 UPON AIR FORCE APPROVAL.
- SUBJECT THE COMBINATIONS OF EACH TO THE BONDING, AGING, AND TESTING NECESSARY TO FULLY ASSESS THEIR POTENTIAL. A MINIMUM OF ONE PROMISING SYSTEM WILL BE SELECTED AND RECOMMENDED TO USAF FOR ASSESSMENT ON WIRE IN TASK 3.

SUBTASKS

- SAMPLE BONDING
 - BONDING PROCESS DEVELOPMENT BY TRIAL AND ERROR APPROACH
- SAMPLE AGING
 - AIR-AGING AT 300°C FOR 1000 HOURS
 - IMMERSION IN CLEANING SOLVENT DS-108 AT ROOM TEMPERATURE FOR 168 HOURS
 - EXPOSURE TO 90°C/95% RH CONDITION FOR 1000 HOURS
- SAMPLE TESTING
 - WEIGHT CHANGE
 - PHYSICAL CHANGE
 - ELECTRICAL PROPERTIES

Task 2 Isothermal Aging Studies - Results

Test A. Effect of Air - Aging at 300°C on Four Most Promising Insulation Systems

	Percent Weight Loss on Air Aging By Candidate Film/Adhesive System ^{a,b)}					
Aging Duration (Hours)	PFPI/AFR700B	PFPI/Cytec 680-1	FPE/AFR700B	FPE/Cytec 680-		
24	1.3	1.2	1.8	5.6		
48	1.2	1.3	2.2	6.7		
120	1.6	1.6	3.9	10.0		
264	2.3	2.1	8.6 ^{cl}	18.2 ^{e)}		
528	3.7	2.9	21.6	50.0		
768	5.0	3.6	27.0	65.6		
1000	6.2	4.6	28.5	70.7		

^{e)}Test sample dimensions approximately 1.25-inch wide x 1.25-inch long x .005-inch thick consisting of selected adhesive (thickness ⁻ .002-inch) laminated between two polymeric films (each ⁻.0015-inch thick)

^{b)}Average of 2 samples

elOnset of severe sample darkening/curling

Task 2 !sothermal Agin; Studies - Results

Test B. Effect of Cleaning Solvent DS-108 Aging at 25° on Four Most Promising Insulation Systems

	Percent Weight Gain on Aging By Candidate Film/Adhesive System ^{a),b)}				
Aging Duration (Hours)	PFPI/AFR700B	PFPI/Cytec 680-1	FPE/AFR700B	FPE/Cytec 680-	
24	0.9	7.4	2.1	8.0	
48	0.9	3.3	1.4	4.8	
120	2.5	7.5	2.2`	6.7	
163	2.7	6.3	1.8	5.4	

^{*}Test sample dimensions approximately 0.5-inch wide x 1.0-inch long x .005-inch thick consisting of selected adhesive (thickness * .002-inch) laminated between two polymeric films (each * .0015-inch thick)

Task 2 Isothermal Aging Studies - Results

Test C. Effect of Humidity - Aging at 90°C/95% RH on Four Most Promising Insulation Systems

Aging Duration (Hours)	Percent Weight Loss (-) or Weight Gain (+) on Aging By Candidate Film/Adhesive System ^{al,b}				
	PFP!/AFR700B	PFPI/Cytec 680-1	FPE/AFR700B	FPE/Cytec 680-1	
24	-0.9	-0.1	+1.1	-1.6	
48	-0.9	-0.1	+1.0	-2.1	
12 0	-0.9	-0.1	+1.1	-2.6	
264	-0.9	-0.1	+1.0°	-2.8°	
528	-0.9	-0.1	+1.2	-2.4	
768	-0.8	-0.1	+ 0.1	-3.3	
1000	-0.7	-0.1	+ 0.3	-3.3	

Test sample dimensions approximately 1.25-inch wide x 1.25-inch long x .005-inch thick consisting of selected adhesive (thickness " .002-inch) laminated between two polymeric films (each ".0015-inch thick)

b) Average of 2 samples, except for FPE/Cytec 680-1

bi Average of 2 samples

a)Onset of severe sample darkening

TASK 2 - RESULTS

- FPE FILM IS NOT A 300°C MATERIAL
- PFPI/AFR700B AND PFPI/CYTEC 680 DEMONSTRATED EXCELLENT THERMAL-OXIDATIVE STABILITY. BOTH SYSTEMS SHOWED ESSENTIALLY IDENTICAL DEGRADATION IN AIR-AGING AT 300°C FOR 1000 HOURS.
- BOTH SYSTEMS ALSO DEMONSTRATED EXCELLENT RESISTANCE TO 90°C AGING IN 95% RH.
- FILM SAMPLES BONDED WITH AFR700B ARE MORE RESISTANT TO THE ATTACK BY DS-108 CLEANING SOLVENT THAN THOSE WITH CYTEC 680-1.

CONCLUSION: PFPI/AFR700B SYSTEM IS THE TOP CANDIDATE FOR TASK 3.

TASK 3 - INITIAL WIRE INSULATION & TESTING

- EMPLOY THE MOST PROMISING FILM/ADHESIVE INSULATION SYSTEM(S) RECOMMENDED AT THE CONCLUSION OF TASK 2 UPON AIR FORCE APPROVAL.
- SUBJECT THE SYSTEM(S) TO CASTING, INITIAL WIRE WRAPPING, AND INSULATED WIRE TESTING NECESSARY TO FULLY ASSESS POTENTIAL.

SUBTASKS

- FILM PREPARATION/PROCUREMENT
 - FILM CASTING AT REXHAM
 - COATING CONTINUOUS FILM WITH ADHESIVE AT TRW
- INITIAL WIRE WRAPPING
- INITIAL INSULATION TESTING

REXHAM FILM CASTING PROCESS OVERVIEW

N-METHYL PYRROLIDONE (NMP) SOLVENT:

14.8% BY WEIGHT PFPI VARNISH SOLID LOADING:

10 FEET PER MINUTE SPEED:

5-MIL X 18-INCH X 5000 FEET MYLAR FILM **CASTING SUBSTRATE:**

40 FEET DRYING OVEN LENGTH:

ZONE 1 = 250°F; ZONE 2 = 300°F; ZONE 3 & 4 = 350°F **DRYING OVEN TEMPERATURE (4 ZONES):**

HIGH QUALITY PFPI FILM PRODUCED: 2 ROLLS OF ~ 1-MIL X 12-INCH X 400-FEET

Casting Solution Preparation

Cast PFPI Film

Control Panel

Drying Oven

CONCLUDING REMARKS

- AFR700B DEMONSTRATED TO BE A 300°C STABLE ADHESIVE MATERIAL
- PFPI (4-BDAF/PMDA)/AFR700B SHOWN AS THE TOP CANDIDATE FOR 300°C WRAPPED INSULATION SYSTEM
- SUCCESSFUL CASTING OF PFPI RESIN VARNISH INTO CONTINUOUS FILM
- COATING OF THIN LAYER OF AFR700B ON CONTINUOUS PFPI FILM IS IN PROGRESS